		Department of Electronics & Communication Engin		ıg,Iı	nteg	ral l	Univ	<mark>ersity,</mark> L	uck	now	7									
		CO-PO Mappin	/																	
		B.Tech(ECE) First Se Proposed	nest	er					1					Outo	ome	p				_
e ry		Toposcu	Pe	eriod	ls		Eva	aluation					<u> </u>	oun		<u> </u>				
Course Category	Code	Subject	L	Т	Р	С	s	ESE						Р	0					
BS	PY101	Physics	3	1	-	4	40	60	P0-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	9-04	PO-10	PO-11	PO-12
CO1	-	To analyze the connection between daily life observations and science. To realize that apparently different ideas of Optics such as Interference and Diffraction have interrelationship them. To realize the simplicity of ideas involved in explaining complex phenomenon. To grow in ideas of different aspect of light and develop connection between daily life applications and science. To analyze the process of development of a new theory while dealing with Polarization.										1	3	3	1	3	2	2	1	3
CO2	D1To realize that apparently different ideas of Optics such as Interference and Diffraction have interrelationship bet them. To realize the simplicity of ideas involved in explaining complex phenomenon.D2To grow in ideas of different aspect of light and develop connection between daily life applications and science To analyze the process of development of a new theory while dealing with Polarization. To correlate that the conceptualization of an idea is far ahead than its practical realization while dealing with LAS To grow in realization of totally different manifestation of light. To find the most recent applications of light in terms of communication and storage of data. To realize that how the design of complex systems is based on the simple ideas. To realize that the conceptualization of an idea is far ahead than its practical realization while dealing with Optics Fibers.											1	3	3	1	2	2	3	2	3
соз		To grow in developing connection between philosophy and science. To find that seemingly different ideas such as Optics and Mechanics have interrelations To understand the process of development of a new theory and its application in day to To realize the requirement of power of imagination.			en tl	nem.			3	3	3	3	1	3	1	3	2	2	1	3
CO4		To grow in developing the connection between philosophy and science To find that seemingly different ideas such as Compton Effect and Quantum Theory ha them. To understand and analyze the process of development of a new theory and how the dev the development of a apparently different idea. To realize and appreciate the efforts made by the individuals to give a new understandin modern dayapplications.	elopi	nent	of o	ne id	lea le	ads to	3	3	3	2	2	3	1	2	2	1	1	3

CO5		To grow in developing connection between daily life utility and material science. To realize that apparently different materials with respect to Electric and Magnetic proper between them. To evaluate that how totally different manifestation of Modern Science leads to new tech To do the evaluation that how an idea is far ahead than its practical realization while dea Super Conductivity.	nolo	gy.					3										3	3
Course Category	Code	Subject											2		0 0	2	2	2	2	3
ESA	EC101	Basic Electronics	3	1	-	4	40	60	PO-1	PO-2	PO-3	P0-4	PO-5	9-0-	P0-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Understand the current voltage characteristics of semiconductor devices. Identify associated with electronics and explain the basic concepts of Semiconductor dioc diode, characteristics and ammeters, DC loadline, Zener diode. To apply the basi working of rectifier circuits such as Full and half wave rectifiers. To solve examp parameters such as Capacitance, load and source effect, line and load regulations	-n ju o des ers f	nctio scrib for	on	3	3	2	1	1	1	0	1	1	0		1			
CO2		Analyze dc circuits and relate ac models of semiconductor devices with their phy explain the structure of bipolar junction transistor. Explain the operation of each bias voltage and charge carrier movement. Identify and explain the various current	devi	ce ii	n teri	ns o	of jur	nction	3	3	3	2	1	1			1			1
CO3		Design and analyze of electronic circuits Describe the application of transistors for amplification. Also to describe the characteristics of different configurations of the load line and bias point. List, explain, and design and analyze the different biasin	ne tra	ansi	stor.		-		3	3	3	2	1	1			1			
CO4		Evaluate frequency response to understand behavior of Electronics circuits. Sketc amplifier circuit for given specification and analyze them discuss oscillator princ frequency stability as it relates to its operation. Analyze and Design the different ideal and practical operational amplifier (op amp) their electrical parameters, nee design different application circuits using op amp	ypes ors.]	, and Discuss	3	3	3	2	1				2							
CO5		List and explain the different number system. Solve examples on converting one another form. State Boolean laws and theorems. State and explain the different lo Analyze and design different adder circuits.					•		3	3	2	2					1			
									3	3	3	2	1	1	0	1	1	0	0	1

		B.Tech(ECE) Third Set	nest	er																
Course Category	Code		L	Т	Р	С	s	ESE						Р	0					
DC	EC 202	Electromagnetic Field Theory	3	1	0	4	40	60	P0-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	P0-9	PO-10	PO-11	PO-12
CO1		Students are able to define and recognize the different coordinate systems and the	eir re	lati	on ir	1			3	3	2	1	1	1	0	1	1	0	0	2
CO2		Explain the fundamental laws governing the electromagnetic fields and calculate				-			3		-	2	1	1			1		1	2
CO3		For the given system, the students are able to design the mathematical equations of							3	3	3	2	1	1			1	⊢		2
CO4		Design the transmission line for the low-frequency communication with the help	of w	rirel	ine c	eircu	it ele	ements.	3	3	3	2	1				2			2
CO5		Generalize the concept of high frequency guided structures like waveguides mean information, commonly used in communication.	ns of	tra	nspo	rting	60		3	3 3 2 2 1 3 3 3 2 1 1 0 1 1 0 1									1	
									3	3 3 3 2 1 1 0 1 1 0 1								1	2	
Course Category	Code		L	Т	Р	С	s	ESE		PO										
DC	EC 203	Circuit Theory	3	1	0	4	40	60	P0-1	PO-2	PO-3	P0-4	PO-5	9-04	PO-7	PO-8	6-04	PO-10	PO-11	PO-12
CO1		Given a circuit, students shall be able to represent signals in mathematical form, i Kirchhoff's laws, and formulate differential equation for LTI system and solve us		•	• •		•		3	3	1	1	2	0	0	0	0	0	0	0
CO2		Given a circuit of passive elements with sources, student shall be able to analyze and evaluate the circuits using Kirchhoff's laws and AC-DC theorems									1	1	2							
CO3		For a given circuit of R, L, C, student shall be able to generate its transient/ frequency response and exa analyze and evaluate the circuit characteristics								3	1	1	2							
CO4		For a given transfer function, students shall be able to identify its pole zeros and suitable design of implementation, develop series / parallel combination to synthe					s, sel	ect	3 3 1 1 2											
CO5		Given a two port network, student shall be able to define its parameters, solve, ar	alyz	e, a	nd n	nodi	fy its	form	3 3 2 1 2											

Course Category	Code		L	Т	Р	С	S	ESE						P	0					
DC	EC 204	Electronic Circuit Simulation Lab.	0	0	2	1	60	40	PO-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	6-04	PO-10	PO-11	PO-12
CO1		Students shall be able to Learn, understand, design and verify the truth tables of combination	ation	al cii	rcuit.				3	2	2	1	1	2	0	0	0	1	0	1
CO2		Students shall be able to Learn, understand the concepts of ALU.							3	2	2	1	1	2				1		1
CO3		Students shall be able to Learn, understand, design and verify the truth tables of Sequent	ial ci	ircui	t.				2	1	2			2				1		1
CO4		Students shall be able to Learn, understand the concepts of memory cell.							2	1	2			2				1		1
CO5		Students shall be able to write the Assembly language programming and shall be able to kit.	exec	ute t	he p	rogra	m us	ing 8085	2	1	2			2				1		1
														2	0	0	0	1	0	1
Course Category	Code		ESE						P	0										
DC	EC 209	Digital Electronics	3	1	0	4	40	60	PO-1	PO-2	PO-3	PO-4	PO-5	9-0-	PO-7	PO-8	6-04	PO-1(PO-11	PO-12
C01		•	Electronics 3 1 0 4 40 60 number, students shall be able to represent various conversion in mathematical form, identify type nents, apply 1's and 2's complements and formulate conversion of any radix to decimal and decimal												0			0	0	0
CO2		Given a Boolean Expression, student shall be able to analyze and evaluate variou K-Map method. For a given Combinational circuit, student shall be able to under blocks and examine, analyze and evaluate various gates, adders, subtractor, multi	stan plex	d its er ar	vari nd er	ous ncod	builc ers.		3	3	3	1		1			1			1
CO3		Given concept of sequential logic would be able to select suitable design of varior registers and counters.		3	2	3	2	1	1			2								
CO4		Given concept of asynchronous sequential logic would be able to understand and flow table, reduction of states and circuit with latches.	ble,	3	3	2	2	1				1								
CO5		Given a AND and OR array, student shall be able to define various logic devices modifydifferent PLD based design.		3	3	2	1					1								
									3	3	3	1	1	1	0	0	1	0	0	1

Course Category	Code		L	Т	Р	С	S	ESE						P	0					
DC	EC 214	Digital Electronics Lab.	0	0	2	1	60	40	P0-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	6-04	PO-10	PO-11	P0-12
CO1		Given a digital trainer kit, students shall be able to Learn, understand and verify the truth	tabl	es of	f the	basic	cs of	gates.	3	1	3	0	0	0	0	0	3	0	0	1
CO2		Given a digital trainer kit, students shall be able to Learn, understand the concepts of Co	nbin	atior	nal ci	ircuit	s.		3	2	3						3			1
CO3		Given a digital trainer kit, students shall be able to Design and test code converter.							3	3	3	2	1				3			1
CO4		Given a digital trainer kit, students shall be able to Learn, understand the concepts of Flip	o-Flo	ps a	nd R	egist	ers.		3	3	2						3			1
CO5		Given a digital trainer kit, students shall be able to Learn, understand the concepts of Cou							3	2	2	1	1				3			1
	-	B.Tech(ECE) Fifth Sen	ieste	er	1	1	1	1	1											
Course Category	Code		ESE						P	0										
DC	EC- 301	Computer Organization & Architecture	3	1	0	4	40	60	PO-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	PO-9	PO-1(PO-11	PO-12
C01		 Classify and compute the performance of machines. Understand how to implement memory chips, boards, modules and caches. Relate to arithmetic for ALU implementation. Understand the basics of hardwired and micro-programmed control of the CPU. Learn about various I/O devices and the I/O interface 							3	3	2	1	1	1	0	1	1	0	0	1
CO2		 Detailed Study of Arithmetic and Logic Unit (ALU) Operation on Integer Representation, Integer Arithmetic, Learn the central Processing Unit: CPU organization, Instruction set, Instruction format, Instruction type, Addressing mode, Understand the H/W Micro programmed control unit. 							3	3	3	2	1	1			1			1

соз		 Learn the concept of memory hierarchy. Discuss the concept of memory organization. Explain the use of cache memory and virtual memory. Understand the concept of memory management hardware. Understand the concept of Direct Memory Access (DMA) 							3	3	3	2	1	1			1			
CO4		 Study of external Memory Magnetic Disk, Learn the Redundant array of independent disks (RAID), Study of Optical Memory, Magnetic Tape. Study of Modules and Programmed I/O. Relation of the External Interface. 							3	3	3	2	1				2			
CO5		 Interpretation of Operating System Understand the Memory Management and Pentium Memory Management, Detailed understanding of ARM Memory Management. Study the Embedded Systems and Microcontrollers Chips for Embedded Application 	e Memory Management and Pentium Memory Management, rstanding of ARM Memory Management.								2	2					1	2	3	3
Course Category	Code		L	Т	Р	C S ESE PO											2			
DC	EC- 302	Integrated Circuits	3	1	0	4	40	60	PO-1	PO-2	PO-3	PO-4	PO-5	9-0-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		To understand the basic concepts of the circuit configuration for the design of l develops skill to solve engineering problems	inear	inte	egrat	ed ci	ircuit	s and	3	3	2	0	0	0	0	0	0	0	0	1
CO2		Perform signal amplification through BJT and MOS and learn the emitter resistareplaced by constant current source.	ince	in di	ffere	entia	l am	plifier	3	3	3									
CO3		Student will be able to design mathematical operation using op-amp and OTA.	will be able to design mathematical operation using op-amp and OTA.								3	3	1							1
CO4		Student will be able to design analog multipliers circuit and perform multiplicat generate the square waveform using Multivibrators.	will be able to design analog multipliers circuit and perform multiplication and division of e the square waveform using Multivibrators. will be able to design the logic gates using TTL,ECL and IIL. Student will be able to design							3	3	2					1			
CO5		Student will be able to design the logic gates using TTL,ECL and IIL. Student w supply circuit.	vill be	e abl	le to	desi	gn th	e power	3	3	2	2		1			1			
									3	3	3	2	1	1	0	0	1	0	0	1

Course Category	Code		L	Т	Р	С	s	ESE						P	90						
DC	EC- 303	Communication Systems Engineering	3	1	0	4	40	60	P0-1	PO-2	PO-3	PO-4	PO-5	9-04	P0-7	PO-8	6-04	PO-10	PO-11	PO-12	
CO1		Understand different types of modulation and demodulation							3	3	2	1	2	1	1	0	0	0	0	1	
CO2		Student learn the theory of probability, random variables, and understand the effective communication systems	ect c	ofno	oise i	in th	e		3	3	1	2	2	1							
CO3		Understand different pulse modulation and demodulation techniques							3	3	2	2	2	1							
CO4		Understand the basics of information theory, source coding techniques, calculate efficiency of source coder	e En	trop	oy of	sou	rce a	ind	3	3	2	1	2							1	
CO5		Understand the methods to mitigate inter symbol interference										2	2	1	1	1				1	
			tigate inter symbol interference									2	2	1	1	1	0	0	0	1	
Course Category	Code		L	Т	Р	С	s	ESE		3 3 2 2 2 1 1 0 0 0 PO											
DC	EC- 304	Automatic Control System	3	1	0	4	40	60	PO-1	PO-2	PO-3	PO-4	PO-5	9-0-6	PO-7	PO-8	PO-9	PO-1(PO-11	PO-12	
C01		Given a system, students shall be able to represent the system in mathematical for system, apply block reduction technique and Mason's Gain formula to obtain the given system, and formulate differential equation to represent the model of a measure equivalent electrical system and solve using Laplace transform.	trar	sfei	r fun	ctio	n of		3	3	2	1	1	1		1	1			1	
CO2		For a given system, student shall be able to analyze and evaluate the system in the performance in time domain for different standard input signals. Evaluate the steps	dict the	3	3	3	2	1	1			1			1						
CO3		For a given system, student shall be able to analyze the system in frequency doma stability. Examine and analyze the stability by Nyquist criterion and Bode Plot	ature of	3	3	3	2	1	1	0	0	1	0	0							
CO4		For a given unstable system, students shall be able to identify and select the suitable compensator. To me the system stable select and design the suitable compensator for implementation. To develop the compe- by using Bode Plot and Root Locus.										2	1				2				

CO2		For a given a system, student shall be able to find the mathematical model called s and will be able to understand the conversion between transfer function and state system to find the time response from state-space representation. Analyze the syst transfer function from state-space model and vice versa	e-sp	ace and	mod l obt	lel. S aine	Solve d the	e the	3				1	1	0	1	1	0	0	1
Course Category	Code		L	Т	Р	С	S	ESE						Р	0					
	EC- 305	Antenna & Wave Propagation	2	1	0	3	40	60	PO-1	PO-2	PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Student will have the depth knowledge of principle of electromagnetic radiation, antenna and will be able to deduce the electric fields and magnetic fields radiated by a alternating dipole antenna	g cu	rren	t elei	nent	/Her	tzian	3	3	2	2		1	1	1	1	1		2
CO2		Student will be able to understand and design the concept of antenna array and will be able the radiation pattern.	le to	do	the a	analy	ze /re	ecognize	3	3	3	3								3
CO3		Student will able to understand ,classify and design the different types of practical anten											2	2						
CO4		Student will able to understand and analyze the different type of radio propagation and the	osphe	re.	3	2	1	1			1	1	2	2	2	1				
					3	3	2	2	2	2	1	1	2	2	2	2				
Course Category	Code		L	Т	Р	С	S	ESE						Р	0					
11114	EC- 306	Departmental Elective-1 (MICROELECTRONICS TECHNOLOGY) 3 1 0 4 40 6									PO-3	PO-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
C01		Students will be able to identify different type of integrated circuits and their applications different methods of silicon wafer manufacturing, cleaning and crystal orientation and det compute resistivity of wafers.		3	3	3	2	1	1	0	1	2	0	0	1					
CO2		Students shall able to understand different types of oxidation techniques and different ox able to compute the thickness of the oxide. Students will able to identify different ion improcess. Students will able to compute range and dopant distribution profiles.																		

соз		Student shall be able to explain about epitaxial and process and its reactors, different varedistribution of impurities during epitaxy. Develop an understanding about chemical v CVD process in IC fabrication.			-	-			3	3	2	3	2	1			1			
CO4		Student shall be able to select the suitable photolithography. To make mask making leaprocess.	rn abo	ut j	pattern	tran	sfer	•	3	3	3	3	2	1			1			
CO5		Student shall be able to explain about bipolar and MOS based IC technology. To know bonding and wire Bonding, dicing, IC packaging techniques.	about	faı	ılt mod	eling	g, d	ie	3	3	2	2	1	1			1			1
<u> </u>									3	3	3	3	2	1	0	1	1	0	0	1
Course Category	Code		L	Г	РС	2	5	ESE						1	90		-	Ū		_
DC	EC- 308	Computer Organization & Architecture Lab	ation & Architecture Lab 0 0 2 1 to Learn, understand, design and verify the truth tables of combinational circuit.												P0-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Students shall be able to Learn, understand, design and verify the truth tables of combin	nall be able to Learn, understand, design and verify the truth tables of combinational circuit.												0	0	3	0	0	1
CO2		Students shall be able to Learn, understand the concepts of ALU.							3	2	3	1	1				3		1	1
CO3		Students shall be able to Learn, understand, design and verify the truth tables of Sequent	be able to Learn, understand, design and verify the truth tables of combinational circuit. be able to Learn, understand the concepts of ALU. be able to Learn, understand, design and verify the truth tables of Sequential circuit.														3			1
CO4		Students shall be able to Learn, understand the concepts of memory cell.	nall be able to Learn, understand, design and verify the truth tables of Sequential circuit.														3			1
CO5		Students shall be able to write the Assembly language programming and shall be able to kit.	us	ing 8085	3	2	2	2	1				3		1	2				
									3	3	3	2	1	0	0	0	3	0	1	1
Course Category	Code		L	Г	РC	2	5	ESE						Р	ю					
DC	EC- 309	Integrated Circuits Lab.	0	0	2 1	e	50	40	PO-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Students shall be able to Learn, understand, design and verify the truth tables of combin	ational	ci	rcuit.				3	3	3	3	1	0	0	0	3	0	0	1
CO2		Students shall be able to Learn, understand the concepts of ALU.															3		1	1
CO3		Students shall be able to Learn, understand, design and verify the truth tables of Sequent	t				3	3	3	3	1				3			1		
CO4		Students shall be able to Learn, understand the concepts of memory cell.	its shall be able to Learn, understand the concepts of memory cell.														3			1
CO5		Students shall be able to write the Assembly language programming and shall be able to kit.	lents shall be able to write the Assembly language programming and shall be able to execute the														3		1	2
							3	3	3	2	1	0	0	0	3	0	1	1		

Course Category	Code		L	Т	Р	С	S	ESE						P	0															
DC	EC- 310	Communication-I Lab.	0	0	2	1	60	40	P0-1	PO-2	PO-3	P0-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	ru-14										
CO1		To develop practical knowledge about theories of analog communication							3	1	3	0	0	1	0	0	3	0	0	1										
CO2		To develop practical knowledge about simulation software.							3	2	3						3			1										
CO3		To provide hands-on experience to the students, so that they are able to applytheoretical	conc	epts	in pr	actic	e.		3	3	3	2	1				3			1										
CO4		Demonstrate various pulse modulation techniques.							3	3	2				1		3													
CO5		Evaluate analog modulated waveform in time /frequency domain and also find modulation	n in	dex								1	1				3			1										
CO6		Develop understanding about performance of analog communication systems.	-	-		T	T											1		_										
									3	2	2	1	1	2	1	0	3	1	0	1										
Course Category	Code		L	Т	Р	С	S	ESE	3 2 2 1 1																					
DC	EC- 311	System Simulation Lab.	0	0	2	1	60	40	PO-1	PO-2	PO-3	PO-4	PO-5	9-0-6	PO-7	PO-8	PO-9	PO-10	PO-11	FU-17										
CO1		Will have a strong knowledge of MATLAB software							3	1	3		2				3			1										
CO2		Will be able to do various engineering projects.								2	3		_				3			1										
CO3		Ability to formulate transfer function for given control system problems.							3	3	3	2	1				3			1										
CO4		Ability to find time response of given control system model.							3	3	2						3			1										
CO5		Plot Root Locus and Bode plots for given control system model							3	2	2	1	1				3			1										
CO6		Ability to design Lead, Lag, Lead-Lag systems in control systems							2	-	-	2	-	2	2		3	2		1										
CO7		Ability to design PID controllers for given control system model							2	3			3			1			2	3										
					1	1	T	1	_		•	-		-	•	1	3			1										
1									3	2	3	2	2	2	2	-														
		B.Tech(ECE) Seventh Se	eme	ster					3	2	3	2	2	2	2				PO											
Course Categor	Code	B.Tech(ECE) Seventh Se	e me :		Р	С	s	ESE	3	2	3	2	2																	
DD Course Categor	FC	B.Tech(ECE) Seventh Se	L	Т	р 0	C 4	S 40		PO-1	PO-2	PO-3	PO-4	PO-5	P				PO-10	PO-11	ru-14										
	EC-		L	Т										P	0					P1-04										

CO3		Analyze Fabrication & characteristics of semiconductors, lasers and LEDs, Fiber Splicer	, Fib	er co	onne	ctor,	Fibe	r												
		couplers, Multiplexers.							3				2				4			1
CO4		Analyze optical source, Fiber and Detector operational parameters							3				1				1			1
CO5	_	Compute optical fiber link design parameters	-					-	3			2					2			
									3	0	1	1	1	0	0	0	1	0	0	2
Course Category	Code		L	Т	Р	С	s	ESE		<u>.</u>				P	0					
DC	EC- 402	VLSI Design	3	1	0	4	40	60	P0-1	PO-2	PO-3	PO-4	PO-5	9-0-6	P0-7	PO-8	6-04	PO-10	P0-11	PO-12
CO1		Design MOS/CMOS circuits and systems.							3	3	2	1	1	1	1	1	1	3	2	2
CO2		Evaluate the system performance.							3	3	3	2	1	1	1	1	1	3	3	2
CO3		Use PSPICE simulation programme to simulate the CMOS designs.							3	3	3	2	1	1	2	1	1	3	3	2
CO4		Test existing systems and their own designs for simple fabrication faults.							3	3	3	3	2	2	2	1	2	3	3	2
CO5		Integrate systems and sub-systems.							3	3	2	2	3	2	1	1	3	3	2	2
									3	3	3	2	2	1	1	1	2	3	3	2
Course Category	Code		L	Т	Р	С	s	ESE		<u> </u>				P	0					
DC	EC- 403	Wireless Communication	3	1	0	4	40	60	PO-1	PO-2	PO-3	P0-4	PO-5	PO-6	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Students shall be able to Define Wireless and Radio. Determine and compare the techniques of various 1G,2G systems with their characteristics and limitations. Learn different types of fading, indoor and outdoor propagati models and calculate losses.									3	1	0	1	0	0	1	0	0	0
CO2		Students shall be able to understand the concept of frequency reuse. Given a Multiple acc able to know multiple access schemes used and channel assignment strategies and calcu differentiate basic parameters of FDMA, TDMA, CDMA. Apply cellular concepts to ev performance in a cellular network and traffic analysis to design cellular network with giv constraints.	late : alua	spec te th	trum e sig	effic nal re	cienc ecept	y and	3	3	3	1		1			1			1

CO3		Understand GSM, CDMA concepts, architecture, frame structure, system capacity and se compare personal area network (PAN) technologies such as Zigbee, Bluetooth etc plan a system for a given environment in which it is to be deployed.							3	2	3	2	1	1			2			
CO4		Students shall be able to define orbital mechanics and launch methodologies. Compare co apply Kepler's First second & Third Law. Students shall be able to calculate basic parame communication system.							3	3	2	2	1				1			
CO5		Students shall be able to design link power budget for satellites and Explain satellite acce able to describe satellite subsystems.	ss te	chni	iques	s. Stu	dent	s shall be		3	2	1					1			
Course Category	Code		L	т	Р	С	s	ESE	3	3	3	1	1	<u>1</u> P	0 PO	0	1	0	0	1
DE	EC- 407	Departmental Elective-5 (DIGITAL IMAGE PROCESSING)											PO-5	9-0-6	P0-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Students shall be able to understand the actual view in 2D image form and represent 2E form, able to understand the basic difference between gray image, color image and bin		-		math	emat	ical	3	2	0	0	0	0	0	0	0	0	0	2
CO2		For a given image, student shall be able to analyze it by applying using enhancement, re techniques.	stor	atio	n and	l seg	ment	ation	3	2										
соз		For a given image, student shall be able to understand the difference between lossless at Further they will be Examine and analyze the compression techniques like Huffman C Transform Coding: JPEG, JPEG2000, Zero tree, Zero block coders.		-		-			3	2	3									
CO4		Students shall be able to understand the Feature Extraction Representation of an ima recognition.		3	3	3	3													
CO5		Student shall be able understand and how to apply it in various field like medical imag Barcodes and Image Forensics.	shall be able understand and how to apply it in various field like medical imaging, CAT, Biom es and Image Forensics.													1				2
									3 3	2	2	2	0	3 2	0		0	0	0	2

Course Category	Code		L	Т	Р	С	s	ESE	РО											
1 1 H I	EC- 411	Departmental Elective-6(BIOMEDICAL INSTRUMENTATION)	3	1	0	4	40	60	P0-1	PO-2	PO-3	PO-4	PO-5	9-04	PO-7	PO-8	PO-9	PO-10	PO-11	PO-12
CO1		Given a biomedical signal sources, students shall be able to differentiate and analyse the signal, identify type of Biomedical sensors and transducers, and Analyze where and how sensors are used in healthcare.								2	3	1	2	3	0	0	1	0	0	1
CO2		Given a Boolean Expression, student shall be able to analyze and evaluate variou K-Map method. For a given Combinational circuit, student shall be able to under blocks and examine, analyze and evaluate various gates, adders, subtractor, multip	stand	l its	vari	ous	buil		3	3	3	1	2	3			1			1
CO3		Given concept of Nervous system explain the respiratory and nervous systems and related measurements. Study design parameter of ECG, EEG						nts.	3	2	3	2	1	3			2			1
CO4		Given concept of Ophthalmology Instruments students shall be able to understand and analyze Electroretinagram, Electroocculogram, Ophthalmoscope, Tonometer for eye pressure measurement.							3	3	2	2	2	3			1			1
CO5	Given a Therapeutic Instruments students shall be able to understand and analyze Diathermy, Defibrillator, cardiac pacemaker, stimulators. design electrocardiographs. Compare pacemakers and defibrilators, understand principles of operation of electrosurgery and laser operating modes. Compare medical imaging methodes and equipment in radiology, nuclear medicine and medical ultrasound and MRI.								3	3	2	1	2	3			1			1
									3	3	3	1	2	3	0	0	1	0	0	1